o The primate ventral visual stream for object recognition
contains prominent corticocortical feed-forward and feedback
connections.
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© For many images (we call them “control”), object category can be decoded
from primate IT from feed-forward responses (Majaj, Hong, et al., 2015).
But for some images (we call them “challenge”), decoding of object catego-
ry In IT Is delayed (Kar et al., 2017), suggesting the importance of feed-
back computations (currently not in use in the HCNN models).

© We propose convolutional recurrent networks (convRNNS) that
have local and global feedback;
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o Local recurrent circuits substantially improve predictions of IT dynamics.

o Long-range feedback improves V4 predictions nearly to 100% of noise
celling.

o Local gated recurrence Is important for improved fit.
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Performance on recognition task on neural images is improved
... but performance on ImageNet drastically worsens.
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o Recurrent convolutional models with feedforward task-optimized weights
with global and local (gated) connections improve predictions of V4 and
IT dynamics over feedforward models.

© Although these models generalize on held-out neurons and images,
even demonstrating superior categorization performance on the neural
Images, their performance on ImageNet drastically worsens.

° With a good choice of recurrent cell and decoder, we can address this
subtle overfitting, and obtain improved performance on ImageNet and
predict neural responses at later timepoints over feedforward models
and recurrent controls. Future work will address how the inclusion of
such feedback connections improve performance on other visual tasks.
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